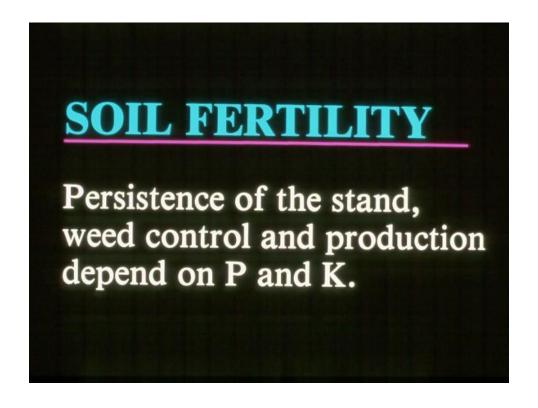
Alfalfa Planting and Production Management

Dr. Bruce Anderson University of Nebraska-Lincoln

Strengths of Alfalfa

- High yield potential
- Excellent feed value
- Long-lived
- Produces nitrogen (N)
- Flexible use

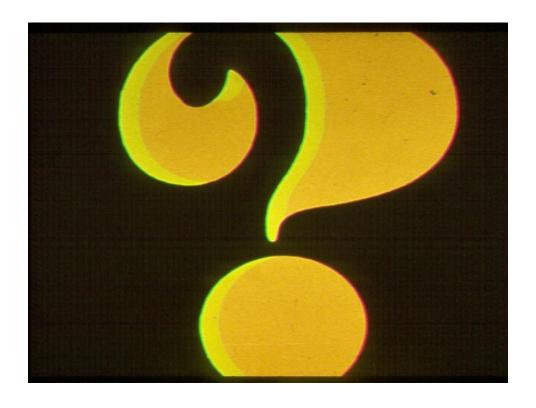
Planting New Fields of Alfalfa


Good Sites

- Fertile
- Well drained
- Deep
- Good moisture

<u>Avoid</u>

- Poor drainage
- High water table
- Saline or salty
- Shallow


Lime for Alfalfa Raise pH for improved nodulation Reduce toxic Al and Mn Supply Ca and Mg Improve soil mineralization and increase P, K, and S availability

INNOCULATION

- > Use Proper Innoculant
- > Store in Cool, Dry Location
- > Mix with Seed and Plant Soon
- Nitrogen Fixation


DATE OF SEEDING

- April
- August

THE SEEDBED

SEEDBED CHARACTERISTICS

- FIRM WITH LOOSE SOIL FOR COVERAGE
- ► FREE FROM "COMPETITORS"
- ► MOISTURE IN UPPER 3 FEET
- ► FERTILITY


SEEDBED CHARACTERISTICS

Lose more plants in the first 24 hours than in the next 24 months

Effect of planting depth on alfalfa stand establishment

Depth of planting (in)						
0.5 1.0 1.5 2.0						
% Establishment						
71	73	55	40			
52	48	28	13			
	71	0.5 1.0% Estab	0.5 1.0 1.5 % Establishmen			

MOWING

Effective –

Broadleaf annuals and some perennials sunflowers, velvetleaf, ironweed

Ineffective –

Grasses, winter annuals, other perennials foxtail, cheatgrass, sandbur, curly dock, mustards, thistles

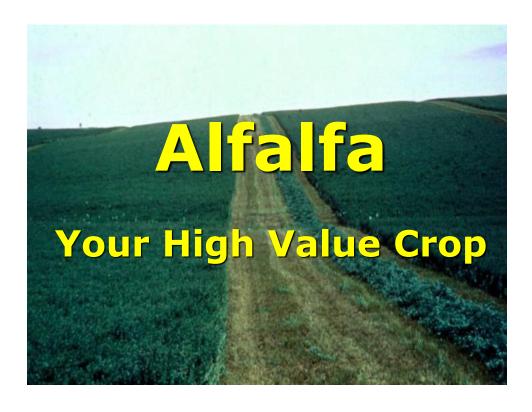
Cover Crops

Alfalfa yields using herbicides or oats to control weeds

Treatment	Seeding Year	1 st Cut Next Year	
	tons/acre		
Check	.90	2.11	
Poast	1.55	2.51	
Poast + Oats	1.31	2.15	
Oats as hay	.93	1.99	
Oats as grain	.64	1.69	
Buctril	1.44	2.42	
Poast + Buctril	1.73	2.14	

Alfalfa yields using herbicides or oats to control weeds

Treatment	Seeding Year	1 st Cut Next Year		
	tons/acre			
Check	.90	2.11		
Poast	1.55	2.51		
Poast + Oats	1.31	2.15		
Oats as hay	.93	1.99		
Oats as grain	.64	1.69		
Buctril	1.44	2.42		
Poast + Buctril	1.73	2.14		


HERBICIDES-PREPLANT -POSTEMERGENCE

Seedling Options

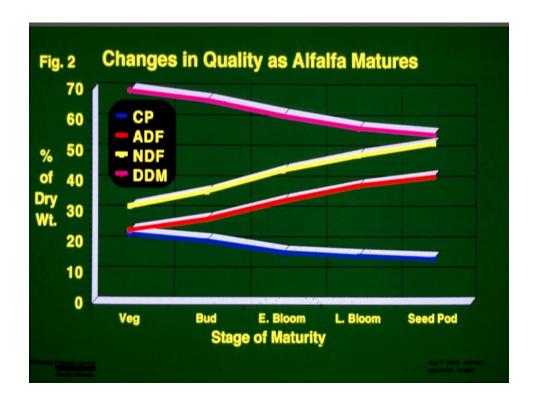
- Eptam
- Balan
- Trust

- Poast
- Select
- Pursuit
- Raptor
- Butyrac
- Buctril
- Roundup

Primary objectives

- Yield
- Quality
- Persistence

Season-long impact of harvest timing


	Bloom Stage at Harvest					
	Pre-bud	Bud	1/10 th	Full		
# of cuts	5	5	4.3	3.7		
Tonnage ¹	3.8	4.1	4.3	4.4		
Protein %	22.0	21.3	20.5	18.4		
Protein yield	1670	1750	1760	1620		
DMD ² %	68.1	67.2	65.0	61.8		
DMD ² yield	5180	5510	5590	5440		
¹ Dry weight basis						

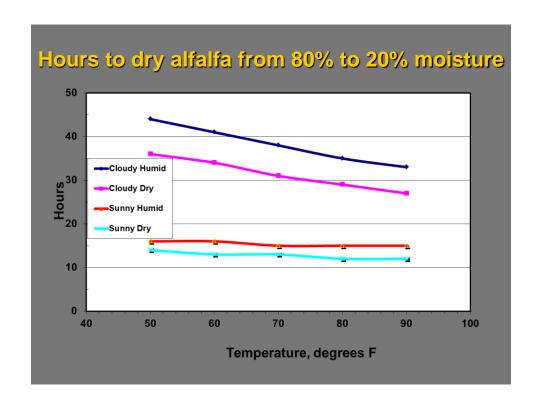
² Dry matter digestibility

Altalta IVI	aturity Affe	cts N	/lilk Pr	oduc	ction
		Alfalf	a matu	rity (bl	loom)
	%	Pre	Early	Mid	Full
	Concentrate				
	20	80	68	57	52
4% Fat Corrected	37	83	69	62	55
Milk,	54	87	77	66	65
lb/day	71	86	77	65	70

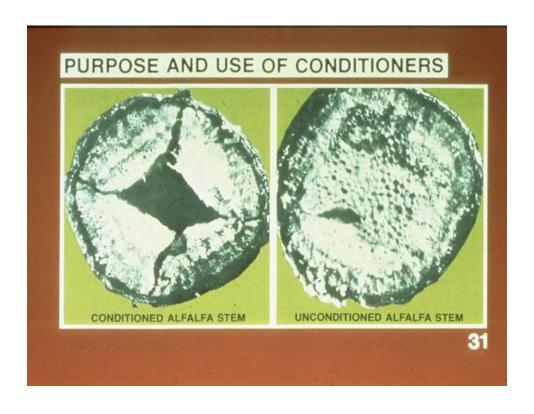
Alfalfa Maturity Affects Milk Production					
		Alfalf	a matu	rity (b	loom)
	%	Pre	Early	Mid	Full
	Concentrate				
4% Fat Corrected Milk, Ib/day	20	80	68	57	52
	37	83	69	62	55
	54	87	77	66	65
	71	86	77	65	70

Alfalfa Maturity Affects Milk Production					
		Alfalfa maturity (bloom			loom)
	%	Pre	Early	Mid	Full
	Concentrate				. 0
4% Fat Corrected Milk, Ib/day	20	80	68	57	52
	37	83	69	62	55
	54	87	77	66	65
	71	86	77	65	70

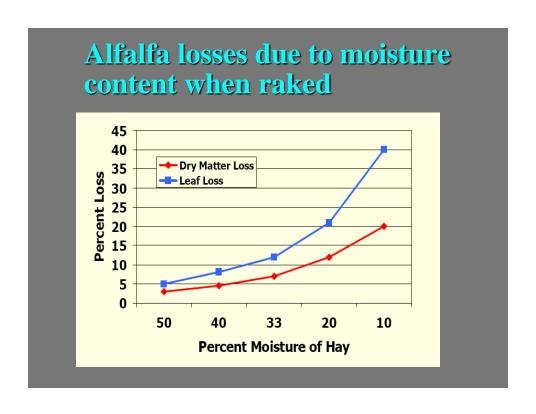
Extra concentrate
CANNOT fully replace
the loss in feed value
(or milk production)
when alfalfa quality
declines.

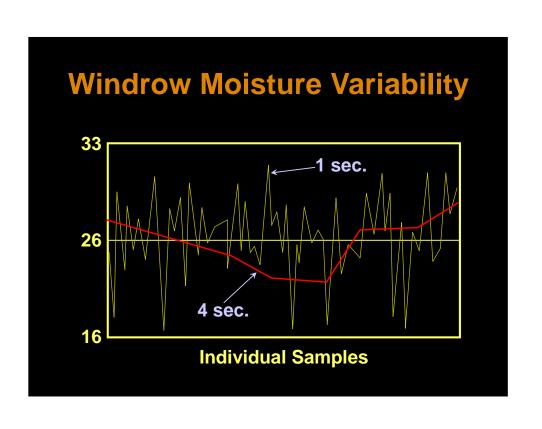

Losses in Making Hay & Silage

- Metabolic: plant respiration; reduce by faster dry down
- Weather: leaching, leaf shatter, respiration; reduce by shorter exposure
- Mechanical: machine operation, leaf loss; reduce by proper moisture and proper machine operation
- Storage: microbes cause mold and heat, heat lowers protein & energy digestibility, mold reduces palatability & intake; reduce by proper moisture


Mechanical losses

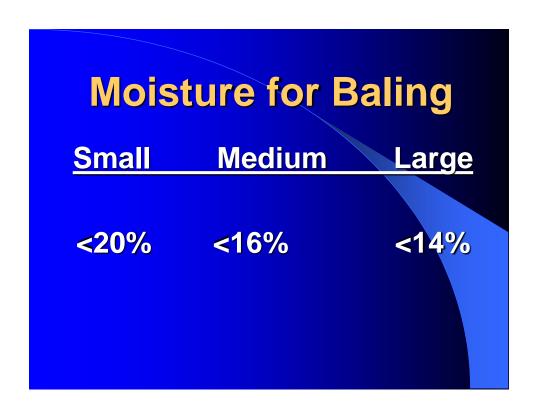
	% of nutri	ents lost
Operation	Average	Range
Mowing	2	1 - 4
Conditioning	5	2 - 10
Raking	8	3 - 20
Tedding	7	3 - 25
Baling		
square	7	3 - 8
round	9	4 - 18
Total	24	12 - 50

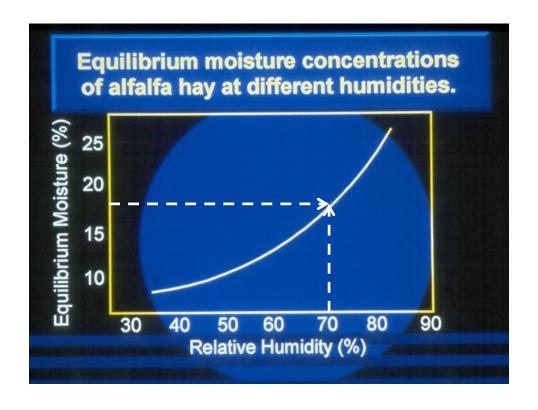




Tedding

- * BEWARE OF LEAF LOSS
- * shortly after cutting
- * uniformity





Inoculants

- Not consistently effective for protecting 'tough' hay
- Most useful when baling hay that might store safely without help – insurance

Preservatives

- * Inhibit or kill bacteria, mold, and yeast
- * Discoloration
- * Reduce but will not eliminate heat damage

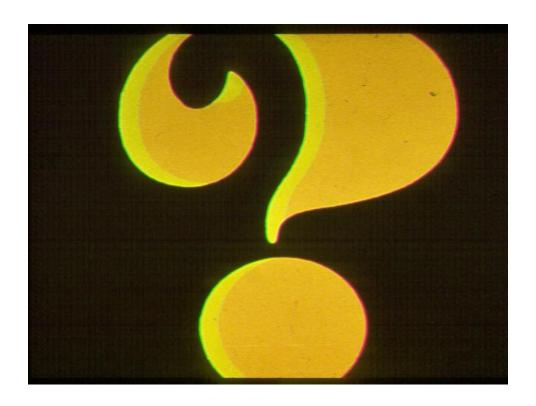
Dew Moisture vs Stem Moisture

Specialized Preservative Rates

Bale type	Moisture type	<u>Moi</u> <20	sture co 20-24	nc. 24-30
Small square & large round	Dew	2	6	12
& large round	Stem	4	8	16
Large square	Dew	4	8	16
	Stem	6	12 (?)	NO

The only preservatives or inoculants that permit consistent, reliable and safe baling of high moisture hay (over 20%) when applied uniformly at correct rates are the organic acids.

Storage



STORING BIG BALES

- * Cure <u>before</u> storing
- * Air circulation
- * Humidity and temperature
- * Weather damaged
- * Drying fans

Bruce Anderson
Extension Forage Specialist
Dept. of Agronomy & Horticulture
University of Nebraska
Lincoln, NE 68583-0910

402/472-6237 banderson1@unl.edu