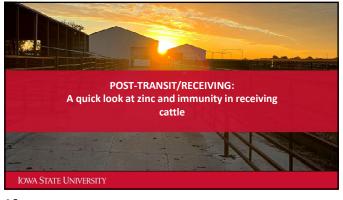
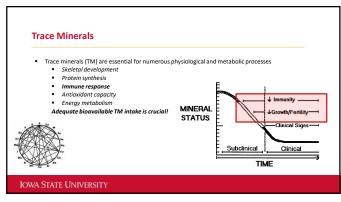
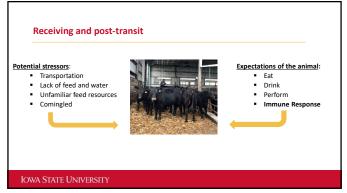


14

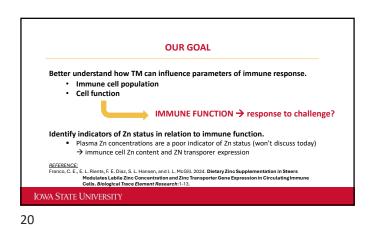

Conclusion

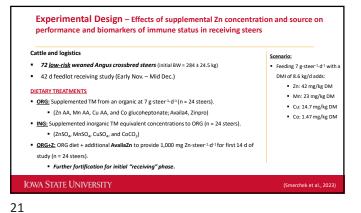

- Zn supplementation (100 mg Zn/kg DM) was beneficial to performance during the preconditioning and receiving period.
 Particularly for the previously unsupplemented steers entering the feedlot.
- Transit duration matters.
 - Alters metabolism and recovery rate!
 - May influence feeding behavior post-transit.
 - Prior dietary treatment may influence recovery and feeding behavior posttransit.

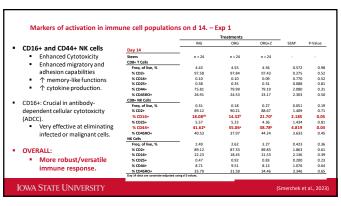

<u>ua</u>

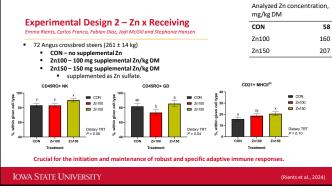
IOWA STATE UNIVERSITY

15






<section-header><section-header><section-header><section-header><section-header><section-header><section-header>



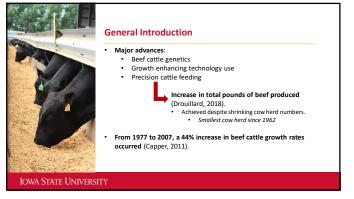
IOWA STATE UNIVERSIT

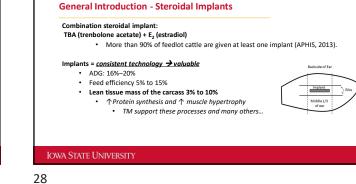
		Treatments				
	ING	ORG	ORG+Z	SEM ²	P-value	
	n=24	n=24	n=24	-	-	
Overall						
Initial BW, kg ³	284	284	284	5.0	0.99	
D 42 BW, kg ³	359	366	366	3.1	0.21	
ADG, kg/d	1.78 ^y	1.94×	1.99×	0.07	0.07	
DMI, kg/d ⁴	8.81	8.94	8.42	0.24	0.21	
G:F ⁴	0.193 ^b	0.217ª	0.231ª	0.0091	0.01	
¹ Initial BW was used as a c ² Greatest SEM reported	ovariate for all gro	wth performanc	e calculations			
³ BW presented as BW*0.9	5					
4 n = 18 for ING	5					

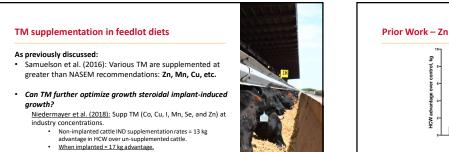
OVERALL FINDINGS

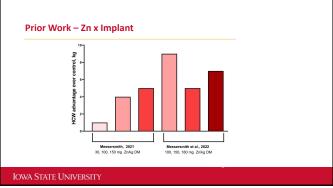
- Organic TM supplementation improved growth performance during the receiving period.
- TM supplementation, regardless of source, influenced markers of immune function. Exact relationship between TM and immune markers has not been fully elucidated.
 More work is needed!

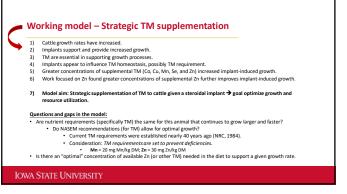
These studies indicate dietary Zn can influence immune cell population and markers of activation within both innate and adaptive immune cells. Pretty cool!

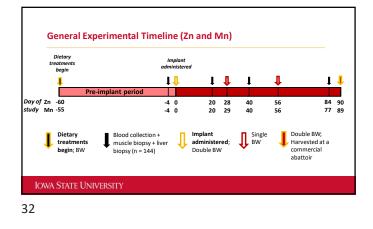

- Still a developing and quickly evolving area of research.
 - BRD = HUGE annual economic loss (over \$3 billion) Small, real improvements = large returns/efficiency!

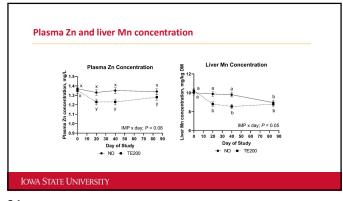

25


.

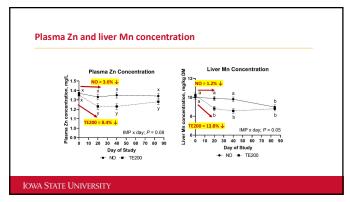



26





Experimental Design


Angus-cross steers (n = 144; 362 kg \pm 20.4) were housed in pens (n = 24) at the Beef Nutrition Farm . (BNF) in Ames, IA from November 2021 - April 2022.

Steers (n = 24 per treatment) were stratified by BW in a 3 × 2 factorial design.

- Dietary treatments (ZINC; supplemented as ZnSO₄ starting on d -60):
- Zn0: no supplemental Zn (<u>analyzed 53 mg Zn/kg DM</u>) Zn30: 30 mg supplemental Zn/kg DM; (<u>analyzed 83 mg Zn/kg DM</u>) .
- Zn100: 100 mg supplemental Zn/kg DM; (analyzed 157 mg Zn/kg DM)
- Implant treatments (IMP; administered on d 0):
- - NO: no implant
 TE200: High potency combination implant (TE-200, Elanco, Greenfield, IN; 200 mg TBA + 20 mg E₂)

	NO				TE200			ZINC wi	thin NO		within 200	Withir TE200
	Zn0	Zn30	Zn100	Zn0	Zn30	Zn100	SEM	L	Q	L	Q	No Zn vs Zn
Steers	24	24	24	24	24	24						
Day 0-28												
d 0 BW, kg	466	469	472	473	474	470	3.7	0.22	0.81	0.52	0.70	0.84
d 28 BW, kg	515	516	523	530	537	537	4.9	0.22	0.79	0.89	0.30	0.41
ADG, kg/d	1.74	1.74	1.80	2.02	2.20	2.21	0.072	0.55	0.87	0.12	0.19	0.04
DMI, kg/d	11.7	11.6	12.0	11.8	12.1	12.0	0.24	0.19	0.52	0.73	0.48	0.44
G:F	0.150	0.149	0.149	0.172	0.186	0.186	0.0058	0.90	0.90	0.14	0.17	0.04

ZINC within

TE200

0.68 0.42

0.40 0.44

ZINC within NO

6.2 0.54 0.38

Q

Within

TE200 No Zn vs

Zn

0.38

0.14

0.47

0.25

	NO			TE200				ZINC within NO		ZINC within TE200		Within TE200
	Zn0	Zn30	Zn100	Zn0	Zn30	Zn100	SEM	L	Q	L	Q	No Zn vs Zn
Steers	24	24	24	24	24	24						
Day 0-28												
d O BW, kg	466	469	472	473	474	470	3.7	0.22	0.81	0.52	0.70	0.84
d 28 BW, kg	515	516	523	530	537	537	4.9	0.22	0.79	0.89	0.30	0.41
ADG, kg/d	1.74	1.74	1.80	2.02	2.20	2.21	0.072	0.55	0.87	0.12	0.19	0.04
DMI, kg/d	11.7	11.6	12.0	11.8	12.1	12.0	0.24	0.19	0.52	0.73	0.48	0.44
G:F	0.150	0.149	0.149	0.172	0.186	0.186	0.0058	0.90	0.90	0.14	0.17	0.04

37

Carcass	Cha	racte	eristics									
										ZINC		Within
		NO			TE200			ZINC wit	thin NO	TE	200	TE200
	Zn0	Zn30	Zn100	Zn0	Zn30	Zn100	SEM	L	Q	L	Q	No Zn vs Zn
iteers	24	24	24	24	24	24						
Carcass Characteristics												
HCW, kg	379	380	385	397	402	398	4.0	0.29	0.99	0.95	0.37	0.51
REA, cm ²	92.0	91.7	90.8	94.0	96.4	92.1	0.22	0.54	0.99	0.17	0.11	0.90
RF, cm	1.42	1.30	1.40	1.40	1.32	1.35	0.028	0.94	0.23	0.77	0.43	0.45
DP, %	63.1	63.7	63.7	63.9	64.0	63.9	0.29	0.19	0.22	0.90	0.86	0.97
Marblinga	546	546	550	521	478	549	21.6	0.87	0.99	0.16	0.06	0.79
YG	2.71	2.70	2.87	2.87	2.65	2.83	0.116	0.26	0.66	0.93	0.15	0.35
EBF, %	30.5	30.0	30.6	30.4	29.5	30.6	0.42	0.67	0.30	0.40	0.08	0.56

IOWA STATE UNIVERSITY

39

Conclusions

Zn supplementation \uparrow growth d 0 – 28 post-implant.

Growth Performance Overall

NO

24 24

24

Steers

G:F

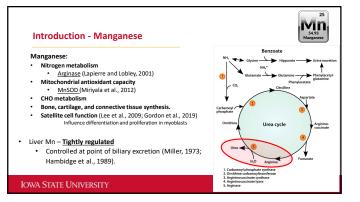
38

OVERALL d 90 BW, kg 600 TE200

ADG, kg/d 1.49 1.43 1.46 1.64 1.71 1.72 0.045 0.76 0.34 0.25 0.36

DMI, kg/d 11.2 11.6 11.6 11.6 11.8 11.8 0.23 0.25 0.20 0.55 0.72

0.135 0.122 0.126 0.141 0.146 0.146 0.0036 0.22 0.02


Zn0 Zn30 Zn100 Zn0 Zn30 Zn100 SEM

24 24 24

595 604 620 628 625

- · Overall performance not significantly affected:
 - Total dietary Zn of at least 83 mg/kg DM was adequate to support additional steroidal implant-induced gain early in the implant period.
- Plasma and liver TM results were generally consistent with prior observations.
 - Plasma Zn concentration (1.36 mg/L) were quite high on d 0.
 Supplemented dietary treatments for 60 d pre-implant
- Supplemented dietary treatments for a Basal diet contained 53 mg Zn/kg DM.
 Lower growth potential cattle? Supplementing Zn at approximately 100 mg Zn/kg DM may best allow for optimal implant-induced growth.

40

Prior work - Mn supplementation in beef finishing diets

- Prior studies investigating Mn in finishing cattle....there aren't many!
- Legleiter, 2005:
 - Supplemented concentrations of 0 up to 240 mg Mn/kg of DM.
 - Increasing supplemental Mn <u>did not increase growth performance</u>.

BUT
• Liver Mn decreases following implant administration (Messersmith, 2018; Reichhardt et al., 2021; Messersmith et al., 2022). WHY?

Experimental Design

- Angus-cross steers (n = 144; 359 kg \pm 13.4) were housed in pens (n = 24) at the Beef Nutrition Farm (BNF) in Ames, IA from November 2022 April 2023. .
- Dietary treatments (MANG; supplemented as MnSO₄):

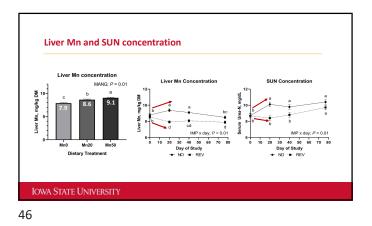
 Mn0: no supplemental Mn (analyzed 14 mg Mn/kg DM)

 Mn2: 20 mg supplemental Mn/kg MN; (analyzed 33 mg Mn/kg DM)

 Mn50: 50 mg supplemental Mn/kg DM; (analyzed 57 mg Mn/kg DM)

• Implant treatments (IMP; administered on d 0): NO: no implant REV: High

REV: High potency combination implant (Revalor-200; 200 mg TBA + 20 mg E_2 , Merck Animal Health, Madison, NJ)


43

		MANG			1	MP			P-value	
	Mn0	Mn20	 Mn50	SEM	NO	REV	SEM	MANG	IMP	MANG*IMP
Day 0 - 56										
d 0 BW, kg	463	467	461	2.3	464	464	1.9	0.22	0.96	0.34
d 56 BW, kg	561	560	565	2.9	556	569	2.4	0.49	0.01	0.66
ADG, kg/d	1.76 ^{ab}	1.68 ^b	1.82ª	0.036	1.65	1.86	0.029	0.02	0.01	0.35
DMI, kg/d	10.6	10.6	10.8	0.17	10.6	10.7	0.13	0.69	0.77	0.78
G:F	0.168×	0.159 ^y	0.168×	0.0034	0.155	0.174	0.0027	0.08	0.01	0.25
Day 56 - 89										
Final BW	617	613	612	3.7	604	624	3.0	0.63	0.01	0.55
ADG, kg/d	1.66×	1.59×y	1.48 ^y	0.055	1.44	1.71	0.045	0.06	0.01	0.43
DMI, kg/d	11.1	11.1	11.2	0.17	11.1	11.2	0.14	0.96	0.33	0.57
G:F	0.143×	0.137 ^{×y}	0.129 ^y	0.0044	0.127	0.146	0.0035	0.10	0.01	0.49
OVERALL										
Overall ADG, kg/d	1.74	1.66	1.69	0.028	1.58	1.82	0.023	0.14	0.01	0.22
Overall DMI, kg/d	10.9	10.9	11.0	0.15	10.9	11.0	0.13	0.89	0.34	0.77
Overall G:F	0.157	0.150	0.153	0.0026	0.145	0.163	0.0021	0.18	0.01	0.25

44

								n beef steers.		
	Mn0	MANG Mn20	Mn50	SEM	NO	REV	SEM	MANG	P-Value IMP	
HCW, kg	393	391	390	2.0	384	398	2.0	0.54	0.01	0.20
REA, cm ²	595 84.6°	81.3 ^b	82.6 ^{ab}	0.8	82.0	396 83.7	0.6	0.54	0.01	0.20
REA, CM ⁻ RF, CM	84.6 ⁻ 1.53 ^y	81.3 ⁻ 1.50 ^y	82.6** 1.68×	0.8	82.0	83.7	0.05	0.01	0.07	0.98
DP, % Yield Grade	63.9 3.56	63.6 3.64	63.7 3.91	0.002	63.6 3.65	63.8 3.83	0.002	0.55	0.35 0.84	0.45
	489	3.64 514	3.91 493	12.4	483	3.83 495	10.2	0.25	0.84	0.23
Marbling ² KPH	489	2.6	493 2.6	0.11	483	2.8	0.09	0.45	0.34	0.94
1d -55 BW se	rved as	a covaria	te in anal	ysis.						

45

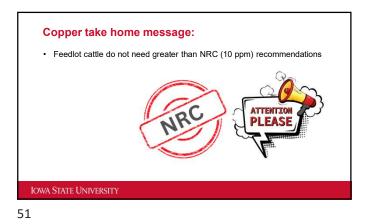
Conclusions

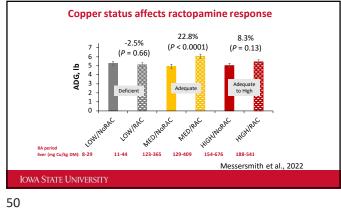
Dietary Mn of 14 mg/kg DM did not seem to limit growth of implanted or nonimplanted cattle.

Manganese:

- Supplementation at NASEM recommendation (20 mg Mn/kg DM) is adequate to allow for optimal implant-induced growth

 Likely sufficient to offset potential potent Mn antagonists such as Fe, common in
- cattle feedstuffs.




Copper: Review

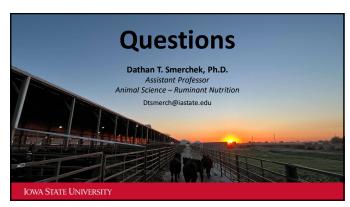
- Copper is an essential trace mineral that plays a role in numerous biological processes:
- Extracellular matrix (lysyl oxidase)
- Oxidative phosphorylation (cytochrome c oxidase)
- Free radical scavenging (superoxide dismutase)
- Ceruloplasmin (Fe mobilization, antioxidant, Cu transport)
- Among many others!

Copper's redox potential is fundamental for biological functions (This is also why excess Cu can be problematic)

49

OVERALL TAKEHOME

Trace mineral nutrition is VERY important throughout the beef cattle/feedlot production cycle.


Trace minerals can influence:

- Transit stress/stress in general
- Immune function

.

Receiving phase performance Response to growth enhancing technology (implants and Beta agonists)

All TM are NOT created equally. Different functions, different storage, different requirements. MORE IS NOT ALWAYS BETTER

